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Abstract

An Intelligent Workbench (VEG) has
been developed for the systematic study of
remotely sensed optical data from vegetation.
A goal of the remote sensing community is to
infer physical and biological properties of
vegetation cover (e.g. cover type,
hemispherical reflectance, ground cover, leaf
area index, biomass and photosynthetic
capacity) using directional spectral data.
Numerous techniques that infer some of these
vegetation properties have been published in
the literature. A fundamental problem is
deciding which technique to apply to the data
and then estimating the error bounds on the
results. Studies have found that using
conventional techniques produced errors as
high as 45%.

VEG collects together in a common
format techniques previously available from
many different sources in a variety of
formats. The decision as to when a particular
technique should be applied is non-
algorithmic and requires expert knowledge.
VEG has codified this expert knowledge into
a rule-based decision component for
determining which technique to use. VEG
provides a comprehensive interface that
makes applying the techniques simple and
aids a researcher in developing and testing
new techniques. VEG also allows the
scientist to incorporate historical databases
into problem solving. The scientist can
match the target data being studied with
historical data so the historical data can be

used to provide the coefficients needed for
applying analysis techniques. The historical
data also provides the basis for much more

accurate error estimates than were previously
available. VEG also enables the scientist to

try "what-if" experiments on data using a
variety of different techniques and historical
data sets to do comparative studies or test
experimental hypotheses.

VEG also provides a classification
algorithm that can learn new classes of
surface features. The learning system uses
the database of historical cover types to learn
class descriptions of one or more classes of
cover types, These classes can include broad
classes such as soil or vegetation or more
specific classes such as forest, grass and
wheat. The classes can also include

subclasses based on continuous parameters,
e.g. 0-30% ground cover. The learning
system uses sets of positive and negative
examples from the historical database to find
the most important features that uniquely
distinguish each class. The system then uses
the learned classes to classify an unknown
sample by finding the class that best matches
the unknown cover type data. The learning
system also includes an option that allows the
user to test the system's classification
performance.

VEG was developed using object
oriented programming, and the current
version consists of over 1500 objects.

Introduction

The intent of this paper is to describe
the advanced and novel concepts and features
of the VEG system, and to show how VEG

contributes to and extends the capabilities of
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the scientist. VEG is an intelligent
workbench for doing scientific studies of the

earth's vegetation using optical reflectance
data from sensor platforms. The system is

being developed as a NASAJGSFC effort in
the Biospherical Sciences branch. The
workbench represents the development of a
concept originally proposed on a much
smaller scale by Abelson and Sussman
(1987). Their workbench was intended to
provide a tool that integrated a diverse set of
concepts into an expressive environment for
conducting scientific investigations. The
VEG system provides a new and
sophisticated intelligent system for the
support of analysing spectral reflectance data
of vegetation.

Background

The remote sensing community

studies spectral data from the Earth's surface
to infer physical and biological properties of
vegetation. Large quantities of sensor data
are collected and integrated to produce

knowledge about surface characteristics such
as cover type, ground cover, leaf area index,
biomass and photosynthetic capacity. Future
work using the Earth Observing System
(EOS Reference Handbook, 1993) will
produce significantly more complex as well
as larger volumes of data. Studies of spectral
reflectance data contribute critically important

ecological information to a variety of
scientific work including the effect of forest

and natural vegetation clearing on local and
regional climates, the relation of vegetation
properties to energy and water balance, the
relation between environmental parameters

governing the energy balance and drought
and desertification, and the relation between

the absorbed, photosynthetically active
radiation and the potential productivity of

vegetation systems. The importance of these
studies is discussed in detail in Kimes,
Sellers and Newcomb (1987).

A central process in analysis is the

application of a variety of extraction
techniques to the raw spectral data to extract
additional information for inferring surface
characteristics. The fundamental problem is

deciding which techniques to apply to the

data, and estimating the error bounds on the
results. Studies have found that using

traditional, ad hoc approaches, the errors of
estimation were as high as 45% (proportion
of true value) (Kimes, Harrison & Ratcliffe,
1991; Kimes and Sellers, 1985). Heuristic
approaches, promise to overcome the
simplicity and lack of flexibility of traditional
algorithmic approaches and reduce estimation
error by taking advantage of partial
knowledge to make decisions about technique
choice.

The basic datum being analyzed is

directional optical reflectance data.
Directional reflectance observations are made
and then extraction techniques are used to
relate these measurements to vegetation
characteristics. Reflectance data can be
collected on the ground, from aircraft or from
satellites. The nature of this data is such that

many decisions as to how to handle a
particular data set need to be made at the
expert level. The process of analysis is also
complex and time consuming., requiring
numerous steps and the comparison of new
data with a potentially very large database of
historical data with known attributes. The

VEG workbench was designed to manage

these problems.

Overview of VEG

VEG collects in a common format

various techniques previously available in a
hodgepodge of formats from a variety of
different sources. VEG makes these

techniques readily available to the scientist in
one program. It also provides a rule-based
decision tool for determining which technique

to choose. It captures expertise in rules about
when to use each technique. It captures the

priority that should be given to different

techniques by a simple we!ghting scheme.
VEG provides a comprehensive interface that
makes applying the techniques simple. VEG
also incorporates historical databases into the

problem solving process, enabling the
matching of a target being studied to similar
historical data so the historical data can be

used to provide the coefficients needed for
applying the techniques. The historical data
also provides a much more accurate error
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estimatethanwaspreviouslyavailable.VEG
providesan interfacefor enteringdatafrom
externalfiles andoutputtingresultsto files in
a variety of different formats. VEG also
includesa toolbox which allows the userto
browsethesystem,dynamicallyplot data,get
helpandprint screendumps.

The current version of VEG
implements three different capabilities:
estimation of vegetation parameters,
estimation of atmospheric effects and a
classification learning system. These
capabilities represent the three subgoal
categories in the system. The subgoal
category"vegetationparametertechniques"
enables the scientist to apply various
techniquesto calculatethesurfaceproperties,
spectral hemispherical reflectance, total
hemispherical reflectance, view angle
extension and proportion ground cover.
Subgoals in the category "atmospheric
techniques"makeatmosphericcorrectionsto
data. "Atmospheric techniques" allow
satellitesandaircraftdatato becorrectedfor
atmosphericeffect to determine what the

equivalentgroundlevelmeasurementswould
have been. Additional atmospheric
techniquesallow data collected at ground
level to beprojectedto differentatmospheric
heights. Theseatmosphericcapabilitiesare
currently being implemented. The
"classification learning system" subgoals
category enables VEG to learn class
descriptionsof different vegetationclasses
andthenusethelearnedclassesto classifyan
unknown sample. The "neural networks"
subgoalcategoryprovidesfor analysisusing
neural or connectionistnetworks. It is not
yet available. Figure 1 shows a
decompositionof basicVEGsystemgoals.

VEG was implementedusingobject
orientedprogramming. The objects in the
VEG knowledge basewere arranged in a
loosely defined hierarchyorganizedby the
major components: databases, control
methods,techniques,toolsandrules. Within
the components,objects are organized in
abstractionhierarchies. Separatesubclasses
hold the objects required by the "estimate
vegetation parameter" and "estimate
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Figure 1: Goal Decomposition of VEG
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atmospheric effect" goal categories. The
learning system is housed in a separate
knowledge base that is loaded only when
needed. The full object system with data and
rules loaded typically consists of about 1500

objects.

The database components of VEG
include various databases used by the

system. The most important database
subclass contains various sets of typical

cover type data which ate used to test and
demonstrate the VEG system. If VEG is run

using new cover type data, additional units
are constructed in this subclass to hold the

new cover type data. During processing,
additional objects are created to store the
intermediate and final results of applying

various techniques to a cover type sample.
These can be inspected or browsed at any
time.

All the options in VEG make use of
the historical cover type database. This
database contains results from experiments

by scientists on a wide variety of different
cover types. The historical cover type
database is maintained externally. It is loaded

when needed in a specific application.
Currently this is in the form of cases stored in
flat files. In the future, it is envisioned that a
relational database environment will replace
the flat fries.

Some of the methods required by
VEG are stored in objects. Other methods
are stored in files external to the

knowledgebase. When the VEG
knowledgebase is loaded, these methods files
ate also loaded. The files contain compiled

Common Lisp code for executing steps in

processing data and applying the techniques.

Rules are used to determine which

techniques to apply to a sample of cover type
data. There is a different set of forward

chaining rules for each VEG subgoal. In
addition, the subgoal proportion ground
cover has two sets of rules, one for single

wavelength techniques, and one for multiple
wavelength techniques. The rules are quite

complex. They combine execution of
Common Lisp functions with traditional

pattern matching. Figure 2 shows an
example of a rule. This rule selects the
technique 2FULL. 1HALF.STRINGS if the
data contains two full and one half strings.

VEG also contains a rulebase for

ranking the techniques. Currently, the rules
in this rulebase implement a simple weighting

system. It is anticipated that a more complex
rulebase for ranking techniques,

incorporating more remote sensing expertise,
will be added to VEG in the future.

The rules in VEG are all domain rules

rather than control rules. System control is
embedded in the window system through the

ordering of windows and the constraints on
the data input to any window.

VEG is embedded in an extensive,

window-driven interface system that provides

a variety of screens to enhance dialogue
between the scientist and the system. The

interface is a key feature of this system. It
was designed to focus the scientist on the
appropriate level of organization to carry out
scientific work without attention to

"housekeeping" functions. The interface
allows the scientist to interact with VEG and

select options at all stages of a run by clicking
the mouse over the appropriate menu option.

It prevents the user from selecting any step
before the prerequisite steps have been
carded out. The interface allows a scientist

with no knowledge of Common Lisp or the
detailed structure of VEG to use the system
with ease.

Most operations are controlled using
the mouse. The only time that the scientist

needs to use the keyboard during a run is if
he or she chooses to enter new data

manually. When a new value is entered
manually, a function is run. If the user has

typed in an invalid value, a message is
displayed and the value is not retained in the
slot. Thus the interface provides validation

of the input data. The interface also prevents
incomplete data sets from being stored.
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IF

THEN

(THE CURRENT.SAMPLE.WAVELENGTHS OF
ESTIMATE.HEMISPHERICAL.REFLECTANCE IS?X)

(THE STRING.OBJECTS OF ?X IS ?NUM)
(LISP (= (LENGTH ?NUM) 3))
(LISP (= 1 (COUNT-IF #'(LAMBDA (X)

(EQ 'HALF (GET.VALUE X 'FULL)))
?NUM)))

(LISP (= 2 (COUNT-IF #'(LAMBDA (X)
(EQ 'FULL (GET.VALUE X 'FULL)))

?NUM)))

(LISP (ADD.VALUE ?X 'TECHNIQUES '2FULL. 1HALF.STRINGS))))

In Plain Text:
If

There is a unit containing data being studied at one wavelength.

The unit contains data which can be characterized as containing 3 strings.
Of these strings, one is a half string and two are full strings.

Then

Add the value 2FULL. 1HALF.STRINGS to the TECHNIQUES slot of the unit.

Figure 2: The Rule that Selects the Technique 2FULL1HALF.STRINGS

An interface to an input file of
unknown cover type data is available in
VEG. The interface enables the user to name

the input file and specify the format for the
file. Using this format, the input file is read
and the cover type data is stored for
processing in the system. VEG also provides
the user with the option of having the results

of processing written to a file and selecting
the format that should be used.

The toolbox is an important part of
VEG. The user can activate the toolbox at
any time during a run. The toolbox allows
the user to read a description of the VEG
system, browse the units and slots within the

VEG system, obtain help about any screen,
plot the zeniths, azimuths and reflectance
values of reflectance data in two different
plots, explore the historical data base and

print out a screen dump of the current screen.

The toolbox provides a means of managing
the levels of abstraction the scientist sees and

allows the scientist to deepen his
understanding of system functionality.

A help system has also been

integrated into VEG. The help system is

currently a prototype version of a system that
would provide on-line help for a scientist
using VEG. It would allow the scientist to
get more information about each screen in the

VEG interface. It was designed to help the
new user of VEG to learn how to operate the
system. Since the help system may not be
needed by an experienced user, it was

configured so that it is loaded only when
needed. The first time the user asks for help,
the help system is automatically loaded. An
interface that allows the scientist to add and
modify help messages has also been
integrated into VEG. This enables the

scientist to evolve the help system over time.

The Subgoal "Spectral Hemispherical
Reflectance"

The steps in the subgoal "spectral
hemispherical reflectance" are described in
this section to illustrate how VEG can be

used. When the option "spectral
hemispherical reflectance" is selected, the
menu shown in Figure 3 is displayed. This

menu enables the user to invoke the steps
involved in processing target data to estimate
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the spectral hemispherical reflectance and
estimate the error in the calculation. Before

each step is carried out, a check is made to
make sure that the prerequisite steps have
been carried out. For example, the results
cannot be output before the techniques have
been executed. If any prerequisite steps have
not been carded out, a message is displayed
and the user is prompted to complete the

prerequisite steps.

ENTER.DATA
CHARACTERIZE.INPUT

CHARACTERIZE.TARGET
CREATE.RESTRICTED.DATA

INTERP/EXTRAP.RESTRIC'IED.DATA
CHARACTERIZE.RESTRIC'TED.DATA

GENERATE.TECHNIQUES
RANK.TECHNIQUES

EXECUTE.TECHNIQUES
OUTPUT.RESULTS

SELECT.ALL.OPTIONS
INITIALIZE.SYSTEM

QUIT

Figure 3: Steps in the Subgoai
"Spectral Hemispherical Reflectance"

The first step is to enter the target
data. The user can either enter a new,

original set of data for an unknown target or
select one of a number of samples of target

data already stored in VEG. Each set of

target data, whether entered by the user or
selected from the samples already in VEG,
can contain reflectance data at one or more

wavelengths. Next, the target data at each

wavelength is characterized. Sets of view
angles in the same azimuthal plane are
identified as "strings." Strings are
characterized as full-strings if they contain
both forwardscatter and backscatter data and

half-strings if they contain either backscatter
or forwardscatter data. Next the target is

characterized. If the target data does not
contain a value for ground cover or leaf area
index, a crude estimation of these values is

made in this step.

The next step is creating the restricted
data set. This step involves selecting a subset
of the historical database to be used for

generating the coefficients required by the
techniques and estimating the error term
when various techniques are applied to the

target data. The selection of the restricted
data set can either be made automatically by

the system or manually by the user.

If the user elects to have the restricted

data set selected automatically by the system,
the database of historical cover types is
searched to find the cover types that best

match the target. The subset of historical
cover types that matches the wavelength of
the target is first identified. From this subset,
the cover types whose ground cover and
solar zenith angle are within ten percent of the
values for the target are then identified and

pushed onto a list. If the list contains
insufficient values, the search is then

widened to include cover types whose sun

angles and proportion ground cover are
within 20 percent of the values for target
data. The search criteria are progressively
widened until either sufficient cover types
have been identified or all cover types whose

sun angle and proportion ground cover are
within 100 percent of the values in the target
have been collected.

The user can also manually select the
restricted data set. In this case, a screen is

opened. This screen allows the user to enter
the maximum and minimum values to be

considered for parameters such as height and
solar zenith angle. The database of historical

cover types is searched to find the cover
types that match the criteria entered by the
user. The user can then select the matched

cover types, enter new maximum and
minimum values and match the data again or
select a subset of the matched data.

Next, the raw reflectance data for

each cover type in the restricted data set is
interpolated and extrapolated so that the view
angles exactly match at each wavelength the
view angles in the target data. The data in the
restricted historical data units are

characterized using the same methods that
were used to characterize the target.

Generating the techniques to be

applied to the data is the next step. The
techniques can be generated automatically or
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selectedby theuser. If theuserelectsto have
thesystemgeneratethetechniques,rulesare
run and the techniquesthat aresuitablefor
estimating the spectral hemispherical
reflectanceof thetargetareidentified. If the
user elects to choose the techniques
manually, a screencontainingthe namesof
all the available spectral hemispherical
reflectancetechniquesis opened.When the
userleft-clicks on thenameof atechnique,a
brief description of the technique is
displayed. A function is called to check
whether the technique is suitable for the
sample. If the techniqueis not suitablefor
thesample,anerrormessageisdisplayedand
the technique is deselected. Rules in the
"rank techniques"rulebaseare runnext and
the techniques are ranked according to a
simpleweightingschemeandthendisplayed
in order. The usercanselect the bestone,
two or threetechniquesfor eachwavelength
orpick all theselectedtechniques.

Thetechniquesareappliedto thedata
at each wavelength in the target. If a
technique requirescoefficients, the user is
askedwhetherall or half the restricteddata
set should be used for generating the
coefficients and estimating the error. The
appropriatecoefficientmethodsareappliedas
necessary.Thetechniquesareappliedto the
restrictedhistorical dataand the difference
betweenthecalculatedspectralhemispherical
reflectance and the correct value for the
spectralhemisphericalreflectancestoredin
the databaseis calculated. Using the error
measurementsfrom severalhistorical cover
types, the root mean square error is
calculated. This providesanestimateof the
error involved in applying the techniqueto
thetargetdata.

In the final step, the results are
displayedon thescreen.Foreachtechnique,
the estimateof the spectral hemispherical
reflectance, the error estimates and the
coefficientsaredisplayed.Thescreenallows
theuserto flip betweentheresultsatdifferent
wavelengths.Theuseris thenaskedwhether
the results shouldbewritten to a file. The
results for all the VEG subgoals,including
the subgoal spectral hemispherical
reflectance,canbewrittento afile.

The Learning System

The learning system provides a tool
for classifying new data and for learning new
classifications. The learning system uses
historical data that represents positive and
negative examples to learn classifications.
The learned classifications can then be used

to classify unknown samples. This is a form
of supervised learning first discussed by
Mitchell (1982). The theory upon which the
learning system was based is discussed in
detail in Kimes, Harrison and Harrison
(1992).

The learning system provides the user
with three different options. In Option 1, the
system uses the database of historical cover

type data to learn class descriptions of one or
more classes of cover types. These classes
can include broad classes such as soil or

vegetation or more specific classes such as
forest, grass or wheat. The classes can also
include subclasses based on continuous

parameters such as 0-30% ground cover, 31-
70% ground cover and 71-100% ground
cover. In Option 2, the system learns class
descriptions for one or more classes and then
uses the learned classes to classify an
unknown sample by finding the class that
best matches the unknown cover type data.
Option 3 allows the user to test the system's
classification performance. In this option,
the system learns class descriptions for one
or more classes and then classifies the

appropriate samples in the data base. The

percentage of correctly classified samples is
then used to summarize the degree of
classification accuracy achieved by the
learning system.

The first step in Option 1 is to define
the training problem. An interface allows the

user to enter the solar zenith angle,
wavelengths and directional view angles. In

order to define the class whose description is
to be learned, the user first selects a

parameter. In the case of a continuous

parameter such as ground cover, the range of
possible values is displayed and the user is
prompted to enter the maximum and
minimum values for the class. In the case of

a discrete parameter such as description, the
screen displays the possible values of the
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parameterandpromptstheuserto enterthe
value for the parameterin the class. For
example,if theparameteris description,the
classmight be forest. VEG thenchecksthe
validity of theentereddataandpromptsthe
user to enter the dataagain if it is invalid.
Additional class parameterscan then be
definedasnecessary.For example,a class
might be defined as forest with 70-100%
groundcover. The usercan thenenterdata
for additionalclassessuchas31-70%ground
cover.

The second step is for the system to
learn the class descriptions for the classes that
were defined in the previous step. The first
step in learning the class descriptions is to
generate the training sets. The system
searches the historical cover type database

and finds the cover types that best match the
training problem. A cover type matches the
training problem if it has data at all the
wavelengths specified in the training

problem, its solar zenith is close to the
training problem solar zenith, and it has a
value for every parameter specified in the
class definition. Once a matching cover type
has been identified, the values in the slots for

each parameter in the class definition are
examined. If the cover type data fits the class
definition, the name of the cover type is

added to the positive training set. Otherwise,
it is added to the negative training set. In the
first search through the data base, each
matching cover type whose solar zenith is
within 10% of the training problem's solar
zenith is identified and added to the

appropriate training set. If insufficient cover
types have been found for the training sets,
the search is then repeated. In the second
search, matching cover types whose solar
zenith is within 20% of the training problem
solar zenith are identified. The process of

increasing the bounds on the solar zenith and
searching through the database is continued
until either the positive or negative training
set exceeds the maximum permissible size,

both training sets exceed the minimum
permissible size or the bounds have increased
to + 100%. The learning system is usually
run with a minimum training set size of 8
units. If when the search ends either training

set is found to be empty, a message is

displayed on the screen and the process of
learning class descriptions is stopped.

Next, the raw reflectance data from
the cover type data in the training sets at the
appropriate wavelength is interpolated and
extrapolated to match the view angles in the
training problem at each wavelength.

Once the training sets have been set

up, rules are run in order to determine the set
of possible hypotheses that can be
constructed for the data in each training set.
The left-hand side of each rule tests the view

angle data. If the rule fires, the appropriate
Common Lisp function is called. Each
function generates possible hypotheses to be
used in the training problem.

For example, the rule LR. 1 fh-es if the
view angle data at a particular wavelength
contains at least two view angles. The fight-
hand side of this rule calls the lisp function
TRY-DIRECTION-RELATIONSHIPS

which generates direction relationships for
every possible pair of view angles in the data
and adds these to the list of hypotheses to be
tested on the training problem. An example
of a direction relationship that might be

generated by this function is,

(GREATER-THAN
0.64 (60 180) (30 180)).

This relationship represents the hypothesis
that at wavelength 0.64 lam, the reflectance at
the view angle (60 180) is greater than the
reflectance at view angle (30 180).

When the forward chaining of the

rules has been completed, the set of all
possible separate hypotheses for each training
problem has been generated.

The next step in learning the class

descriptions is to determine the discrimination
score for each separate hypothesis. Each
hypothesis such as (GREATER-THAN 0.64
(60 180)(30 180)) is tested on each sample in

the positive and negative training sets. The
sample score is 1 if the hypothesis is true and
0 otherwise. The discrimination score is
calculated as:
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i=l j
(1)

where each sample score is S, Si is the ith

positive sample score, Sj is the jth negative
sample score, p is the number of samples in
the positive training set and n is the number

of samples in the negative training set. Thus
a discrimination score of 1 for a hypothesis
represents the case where the hypothesis is

true for all samples in the positive training set
and false for all samples in the negative
training set. This represents perfect
discrimination. A score of 0 is the break

even point where there is no effective
discrimination between the positive and
negative training sets. A score of less than
zero for a hypothesis represents the case
where the hypothesis is true for more
samples in the negative training set than in the
positive training set. In this case, the
converse of the hypothesis would yield a
positive discrimination score. For each
hypothesis such as (GREATER-THAN 0.64

(60 180)(30 180)) two separate scores are
calculated. The order of the elements is re-
ordered and two scores such as:

(((((GREATER-THAN

(60 180)(30 180)) T) 0.64)) 0.4) (2)
and

(((((GREATER-THAN

(60 180)(30 180)) NIL) 0.64)) -0.4) (3)

are reported. In this example, the score
(((((GREATER-THAN (60 180)(30 180)) T)
0.64)) 0.4) means that the hypothesis that the
reflectance at angle (60 180) is greater than
the reflectance at angle (30 180) for the
wavelength 0.64 l_m produced a
discrimination score of 0.4. The

discrimination score in (2) is calculated
directly by testing the hypothesis
(GREATER-THAN 0.64 (60 180)(30 180))
on all the data in the positive and negative
training sets. The discrimination score in (3),
-0.4, is calculated as minus one multiplied by
the discrimination score in (2). Scores such
as (2) and (3) are calculated for each

hypothesis.

The next step in the learning of class
descriptions is to construct compound
hypotheses. A compound hypothesis is
composed of the combination of two or more
individual hypotheses. The idea is that the
interactions between various individual

hypotheses may account for more variance
(be more predictive) than any individual
hypothesis. All the individual hypotheses are
considered as potential parts of compound
hypotheses, and not just the best single
hypothesis.

Before compound hypotheses are
constructed, heuristics are used to reduce the

set of hypotheses for each training problem
by removing any hypothesis that could not be
combined with another hypothesis to form a
compound hypothesis with a discrimination
score better than the current best score. For

this reason, every hypothesis whose positive
training set score is less than or equal to the
current best score for the problem is removed
from the list of hypotheses. Hypotheses that
do not discriminate or that score zero for the

negative training set are also removed from
the list of hypotheses. At the end of this

step, the list of single hypotheses of each
training problem contains only those
hypotheses that could potentially be
combined with other hypotheses to form a
compound hypothesis with a discrimination
score greater than the current best score for
the problem.

The list of single hypotheses may
contain in excess of fifty hypotheses, even
after it has been reduced. The number of

possible compound hypotheses for some
training problems is immense. The problem
of dealing with such a large number of
potential compound hypotheses was the
subject of much effort. Several alternative

strategies were experimented with before a
successful solution to the problem was
found. The first attempt was to implement a
breadth-first search. Compound hypotheses
that had been investigated were stored on an
explored list. Each time a compound
hypothesis was investigated, all possible
combinations of the hypothesis and other
hypotheses were constructed and stored on
an unexplored list. Checks were made to

prevent duplication of compound hypotheses
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on the unexplored list and to prevent the same
hypothesis from being investigated more than
once. This involved sorting all the separate

hypotheses within a compound hypothesis

best score. If the best discrimination score

for a single hypothesis is equaled by a
compound hypothesis, the compound
hypothesis and score are not stored. Once
• k_ 1.... 1 "1 _n,.,-,h hoe i._aan ,'_z_mn|_t_d

The flexibility of the system allows
the scientist a platform to conduct any
number of explorations of a large body of
reflectance data in a very short period of time.
What took days in the past can now be
accomplished in minutes. This means that
the scientist can be much more productive

and expansive in his/her thinking than would
have been allowable without the time

contraction and complexity management that
this system provides.

The learning system provides a tool
for classifying new data and for learning new
classifications. The learning system uses
historical data that represents positive and
negative examples to learn classifications.
The learned classifications can then be used

to classify unknown samples. This is a form
of supervised learning.

VEG was developed as a
NASA/GSFC effort in the Biospherical
Sciences branch. It is now being used by
remote sensing scientists. It has proved to be
a highly useful tool supporting scientific
investigation as described by Kimes,
Harrison and Ratcliffe (1991), Kimes and
Holben (1992), Kimes, Harrison and
Harrison (1992), Kimes, Irons and Levine
(1992), Kimes and Deering (1992), Kimes,
Kerber and Sellers (1993), and Kimes,
Harrison and Harrison (1994).
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